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The use of liquid fuels necessitates methods to assess the quality and suitability of these fuels for their
intended use. Traditionally, this is performed through a series of chemical and physical tests. However, in
some operational situations, streamlined methods to reliably evaluate fuel quality would offer distinct advantages.
The Naval Research Laboratory has been engaged in a research program to explore and develop rapid automated
fuel quality surveillance technologies. Chemometric modeling methodologies have been investigated as a means
to derive mathematical relationships between spectroscopic measurements and measured fuel specification
properties. While this is not a novel approach, the consistency and close quality control of today’s production
fuels render them non-ideal as calibration sets for the construction of multivariate property prediction models,
and thus can limit their precision. This paper describes a practical approach to identify and predict the properties
of petroleum derived fuels, as well as blends with Fischer-Tropsch synthetic and biofuels. The performance
of these property models is demonstrated in an example of a hardware implementation, that is, the Navy Fuel
Property Monitor (NFPM). The NFPM will rapidly estimate a range of specification fuel properties of jet and
Naval distillate fuels, from a single analysis by near-infrared (NIR) spectroscopy. This technology will form
the basis for control, acquisition and data analysis instrumentation for shipboard and land-based use. A further
implementation of this technology will be for in-line sensing applications to provide real-time fuel grade and
specification property monitoring as the fuels are moved through supply pipelines.

Background

United States Navy aviation fuel quality surveillance proce-
dures1 require that incoming aviation fuels be tested for density,
flash point, particulate matter, fuel system icing inhibitor (FSII),
and free water. Visual examination is repeated frequently
throughout the day, and measurements of particulates, FSII, and
free water are repeated periodically during refueling operations.
Each property is tested individually using test methods defined
by the American Society for Testing and Materials (ASTM).
Aboard Navy vessels, a substantial amount of time, resources,
and laboratory space is devoted to carrying out these tests. As
a consequence, there is considerable interest in developing a
sensor-based technology that would be capable of determining
the required fuel properties with a single rapid measurement.
A sensor-based instrument could be used for individual samples
in a benchtop analyzer, as well as continuous real-time monitor-
ing within fuel pipelines. The applications of such a capability
include shipboard quality surveillance, field characterization of
captured fuels, and “smart” fuel handling capabilities on board
Navy vessels and land-based fuel handling facilities.

Spectroscopy is a strong candidate for a fuel quality sensor
because of the relative simplicity of instrumentation, rapid
analysis time, and high quality of the data from a chemometric
perspective. Spectroscopic measurements also have a first order
advantage and are not time-dependent as is the case for
chromatography. Thus, the data preprocessing requirements,
while critical, tend to be less demanding for spectroscopy than
for chromatography. A survey of current literature shows that
a variety of fuel types, ranging from gasoline to jet and diesel,
have been examined using both near-infrared (NIR)2-6 and
Fourier transform infrared (FTIR)7 instruments, as well as
FT-Raman8-10 instruments. A number of fuel properties have
been predicted via chemometric regression of spectroscopic data,
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including octane/cetane number,11 flash point, freeze point,
density, viscosity, sulfur content,12 oxygenates (such as methyl-
t-butyl ether and ethanol), aromatic, olefin, and saturate content,
distillation fractions, and vapor pressure. Of these, the correlation
of octane number to NIR spectra has been the most successful
with numerous octane analyzers based on this method on the
market today. Capillary gas chromatography has also been
correlated13 with combustion properties in selected jet propulsion
engines.

The main purpose of any tool developed to conduct fuel
quality surveillance is to detect off-specification fuels before
they can be introduced into the engine. This situation typically
arises with either the use of the wrong fuel grade, thermally or
chemically induced changes, or contamination. Prediction of
fuel properties from spectroscopic measurements is not a new
concept, but previous efforts have not been entirely successful
in modeling fuel properties with sufficient precision. This is
due largely because fuels are produced with narrowly controlled
properties which do not span the specification ranges over which
the predictions have to be made, and thus constitute non-ideal
calibration training sets for the formulation of chemometric
prediction models. In addition, some of the ASTM measure-
ments against which the models are calibrated can contain
significant levels of uncertainty which are propagated throughout
the calculations. Therefore, the assessments provided by standard
PLS modeling methodologies must be considered suspect, and
novel strategies must be developed and employed to reliably
model fuel properties via chemometric modeling of spectro-
scopic data.

Fuels as Non-Ideal Training Sets

The PLS algorithm is very adept at finding linear relationships
in complex data. To formulate a robust property model, several
conditions should be met: (1) the property values being modeled
should span their respective specification ranges; (2) all the
expected sources of variance in the instrumental data (e.g., short-
term noise, day-to-day drift, and long-term drift) should be
expressed in the training data; and (3) a randomized sampling
protocol should be followed. Ideally, the variances would be
uniformly distributed, and the range in property values would
be high compared to the errors in the reference measurements
used to obtain those values. Furthermore, the number of samples
should be high enough to be statistically meaningful when a
multivariate model is calculated.14,15 When the calibration data
do not meet these requirements, over modeling becomes more
likely and more difficult to assess. “Over-modeling,” also
referred to as overfitting, occurs when the PLS finds a correlation
between the compositional data and the measured properties
when no inherent relationship actually exists. Overmodeling may
be due to chance correlations, selection of a model size that is
too high, or a combination of the two. The result is a model
that may fit the training set quite well but will not recognize
new samples.

Fuel property data, in general, tend to be limited in scope
since the majority of specification fuels are produced with a
fairly narrow range of properties. While the overall goal of a

property assessment methodology is to detect outliers, that is,
off-specification fuels, this process still depends on a quantitative
assessment of the critical fuel properties. Thus, at a minimum,
the PLS models must be capable of quantitatively predicting
the property values over the respective specification ranges with
an acceptable level of uncertainty. It is common practice, when
designing a chemometric experiment, to formulate the calibra-
tion training set such that the values to be modeled are uniformly
distributed over the range of prediction. However, for reasons
described above, this is neither possible nor practical for fuel
property data, and we are left with the task of developing
calibration models from non-ideal training set data. As a
consequence, special care must be taken during calculation of
multivariate property models to avoid overfitting.

Many of the limitations encountered in modeling fuel
properties from ASTM property measurements stem from this
non-ideal distribution of available property measurements. While
it is computationally easier to limit the range of property
predictions to the ranges defined by the available data, that
would not provide the means to screen fuels for specification
compliance across an entire given specification range. Fortu-
nately, if a given property is linearly related and correlated to
the compositional data, the PLS algorithm can extrapolate
beyond the range of calibration data to the specification limits
if the system response remains linear and the prediction errors
are within acceptable limits. However, there are other conse-
quences of non-ideal training set data that are not so easily
overcome. PLS models can easily be overfit or overmodeled16-19

with non-ideal training data.20-22 For a set of fuel data that is
limited in scope, particular care must be taken when interpreting
the results of PLS calibration. Preliminary studies may indicate
that spectral data can be successfully modeled to a property
when really the result is due to overfitting. When a PLS or PCA
model is constructed, one parameter that must be specified is
the number of latent variables (LVs) or the model size. Model
size refers to the level of detail to include in the models.
Increasing model size, that is, including more detail or more
LVs, will produce a better correlation. However, as more detail
is incorporated into the model, the resultant calibration becomes
more specific to that particular set of data. Thus, it is critical to
appropriately balance model size with model robustness, and
the normally accepted methods to accomplish this have proven
to be unsuitable for treating non-ideal training sets.

This research effort has been focused on exploiting the
advantages offered by state-of-the-art chemometric modeling
to determine if incoming fuels are “fit for purpose” on the basis
of composition. A series of Partial Least Squares (PLS) models
have been developed to predict certain fuel properties from
compositional analyses conducted with NIR spectroscopy.
Correlation of fuel spectra with properties is not a new concept,
but this has only been achieved to a limited extent. This is due
in part to the nature of hydrocarbon fuels, which imposes
significant technical challenges that must be overcome, and in
many cases, traditional modeling approaches are not sufficient
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to provide property estimates with sufficient precision. In this
paper we discuss why fuels can be so difficult to model
accurately, the methodologies that we have developed to
overcome these limitations, and their implementation in a NIR-
based fuel analyzer.

Experimental Section

Near-Infrared (NIR) Spectroscopy. NIR spectroscopy was
selected for this purpose, since it has been shown23-25 that the
critical fuel specification properties of Navy mobility fuels can be
estimated from chemometric modeling of NIR spectra. Partial Least
Squares (PLS) models were constructed using spectra acquired from
two different Bruker Optics NIR spectrophotometers using custom
in-house software written in compiled LabVIEW 8.5 (National
Instruments Corporation, Austin, TX). The spectrometers employed
thermoelectrically cooled 512 element GaAs detector arrays that
ranged from ∼950 to ∼1650 nm. The 512 pixels of the grating
were assigned wavelengths by collecting heptane spectra on each
unit and aligning the peaks/valleys from the first derivative to a
standard reference spectrum. The portion of the spectrum corre-
sponding to a range of 1000 to 1600 nm (splined to a 1 nm
resolution) was used for data analysis. Spectra were sampled at a
rate of 500 ms and were not averaged.

Fuel Samples. Over 800 jet and diesel fuel samples from around
the world were used in the present study, although not all of the
available samples were provided with reference values for every
potential fuel property. Both the jet (Jet A, Jet A-1, JP-5, and JP-
8) and diesel (NATO F-76 Naval distillate, ultralow sulfur diesel,
marine gas oil) fuel sample populations were obtained from a wide
variety of locations to provide for as much potential sample variance
as possible. Reference specification fuel properties were measured
using standard ASTM testing methodologies.

Chemometric Analysis. Partial least-squares (PLS) regression26

was performed utilizing the NIR spectra against the measured fuel
properties. The numerical data, once imported into MATLAB
R2008a (MathWorks, Inc., Natick, MA), were assembled into
matrices in which each row was a spectrum of a different fuel
sample. PLS algorithms were implemented utilizing the PLS_Tool-
box for MATLAB ver. 4.2 (Eigenvector Research, Inc., Wenatchee,
WA). Calibration models were evaluated utilizing “leave one out”
cross validation27 (LOO-CV) in which the property value of each
sample is predicted utilizing a calibration model built from all of
the other data, in accordance with eq 1

RMSECV)�∑
i)1

n

(yi - ŷi)
2

n
(1)

where n is the number of samples in a LOO-CV, i represents the
sample left out, yi and ŷi are the measured and predicted property
values, respectively. Fuel type identification was performed using
Partial Least Squares Discriminate Analysis (PLSD). For these
models the different types were assigned category values of 1 or
-1.

Model sizes, that is the number of constituent LVs for all the
fuel property prediction models were determined with an F-test28-30

statistic, applied to the cross-validation results of the PLS fuel
modeling.31,32 An 85% confidence interval was used with a
maximum of 10 LV. The F-test procedure protects against over-
fitting, while allowing for automatic model maintenance.

Results and Discussion

Impact of ASTM Measurement Precision. The ranges of
some fuel property values were narrowly defined and had a
relatively non-uniform distribution. Values of the selected fuel
properties that are outside or near the extremes of the fuel
specifications are rare, and most of the properties cannot be
artificially manipulated without introducing compositional ar-
tifacts that would change other aspects of the sample matrix.
One way to parametrize the quality of the fuel measurement
data with respect to PLS modeling is to compute the range-
error ratios (RER)32,33 in accordance with eq 2, where ymax and
ymin are the maximum and minimum values of the measured
property over all the training set samples, and yreprod denotes
the published error in the ASTM reference method used to
obtain y. RER values for some fuel properties in our calibration
set are shown in Table 1. A low RER indicates that the range
of measured values of a given property in a set of fuel samples
is not significant compared to the inherent uncertainty of the
value produced by the ASTM test method itself. Thus, for a
given property, a data set with a low RER would imply that
the ASTM test method would be the major source of uncertainty
in the PLS predicted value of that property. A property measured
by two different testing methods may have nearly the same range
but very different RER values.

RER)
(ymax - ymin)

yreprod
(2)

Accordingly, property measurements with high RER values are
those in which the ASTM measurement precision will not be a
factor in the precision of predicted values from a PLS model
derived from these fuel samples.
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Table 1. Range Error Ratio (RER) Values Calculated for
Several Jet Fuel Property Measurementsa

property ASTM specification RER

density @ 15 °C (kg/l) D4052 131
naphthalenes, UV (vol%) D1840 105
refractive Index D1218 63
viscosity @ -40 °C (cSt) D445 42
freeze point (°C) D5972, D2386 35
viscosity @ -20 °C (cSt) D445 31
flash point, miniflash D3828 13
aromatics, HPLC (vol%) D6379 12
flash point, Pensky-Martens D93 11
distillation IBP (°C) D86 8
distillation FBP (°C) D86 8
aromatics, FIA (vol%) D1319 7
pour point (°C) D97 6
Saturates, FIA (vol%) D1319 5

a A high RER indicates that the ASTM measurement errors are
negligible compared to the range of available values of that
measurement in this particular training set.
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Model Significance Estimation. It is important to exercise
caution when interpreting the results of PLS modeling of fuel
properties from non-ideal training set data, since the PLS
algorithm has the ability to find chance correlations, when in
reality no relationship exists. To obtain a non-biased statistical
assessment of the PLS calibrations, significance testing was used
to determine the extent to which the fuel properties were
correlated to the spectroscopic measurements.

To establish whether or not a model is statistically meaningful,
the ratio in eq 3 can be computed, where yi,r and ŷi,r correspond
to reference and predicted y values of each sample (i) for a
PLS model in which the y vector containing the fuel properties
was shuffled randomly.34-37 The yi,o and ŷi,o values correspond
to the reference and predicted values of each sample (i) used in
the original model. In this equation, dfr was the number of
samples in the model multiplied by the number of randomiza-
tions performed and dfo was the number of samples in the
original model. Under the assumption that RS should have the
same distribution as F, significance levels (R) of RS were
computed from the F distribution. Probability levels were then
computed as (1 - R) × 100%.

RS )
∑
i)1

n

(yi,r - ŷi,r)
2 ⁄ dfr

∑
i)1

n

(yi,o - ŷi,o)
2 ⁄ dfo

(3)

It has been demonstrated32 that if a correlation exists between
the NIR spectra and a particular fuel property, then when the
property values of the calibration set are randomized the
correlation will be lost and the resulting predicted values will
tend to cluster around the mean value of that property within
the data set.

Low significance would be a consequence of (1) a lack of
statistical correlation between the data and the property of
interest, or (2) unsuccessful or over modeling of the data. These
significance tests are particularly useful for small data sets or
property distributions that do not follow an ideal experimental
design. The procedures can also be used to determine if more
samples are needed to prevent systematic over modeling and
whether the models may be producing an overly optimistic
prediction error. Another advantage of expressing results in
terms of statistical probabilities is that side-by-side comparisons
can be made across different properties and across different
analytical methodologies.

In Figure 1, the NIR-based model correlation probabilities
for several fuel properties are plotted as functions of the number
of LVs for several critical fuel properties. A modeling prob-
ability of 50% or less infers that the PLS prediction is no better
than a random guess. Thus in Figure 1, it is evident that, with
the exception of olefin content and lubricity (BOCLE), the NIR-
based PLS models shown are correlated with the fuel properties.
The statistical significance of some other fuel properties is given
in Table 2. Note also that in those cases where the property
models are statistically meaningful, this was achieved with five
or less LVs using NIR data from this fuel training set.

Estimation of Modeling Error. A useful diagnostic when
computing PLS models is the leverage of unknown samples

that are to be predicted. The leverage of an unknown sample
(hi) when mean centering is used has been defined38 as

hi )
1
n
+∑

j)1

a ti,j
2

t̂jt̂j
T

(4)

where n is the number of calibration samples and tj is the PLS
scores vector of the jth sample. For unknown spectra, xunk, the
sample leverage, hunk, using PLS weights W, can be calculated
in accordance with eq 5.

hunk)xunk × W × WT × xunk
T (5)

Leverage can be thought of as a measure of the distance of the
unknown sample variable from the calibration data in the PLS
model space and is closely related to Hotelling’s T2 statistic.39

The T2 is the sum of squares of the score values from each
latent variable, standardized according to the corresponding
score values of the calibration model. Thus, the leverage can
be used to determine if an unknown sample falls within the
expected normally distributed population of the model. Samples
with leverages outside of these limits can be considered as

(34) van der Voet, H. Chemom. Intell. Lab. Syst. 1994, 25, 313–323.
(35) van der Voet, H. Chemom. Intell. Lab. Syst. 1995, 28, 315.
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M.; Barnard, J.; Shen, Z. J.; Bookstein, F. L.; Shenton, M. E. Schizophrenia
Res. 2002, 53, 57–66.
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(38) Miller, C. Chemom. Intell. Lab. Syst. 1995, 30, 11–22.
(39) Stork, C. L.; Kowalski, B. R. Chemom. Intell. Lab. Syst. 1999, 48,

151–166.

Figure 1. NIR-based model correlation probabilities are plotted as
functions of the number of LVs for several critical fuel properties. A
modeling probability of 50% or less infers that the PLS prediction is
no better than a random guess.

Table 2. Statistical Significance As a Function of the Number of
LVsa

property
ASTM

specification 1LV 2LV 3LV 4LV 5LV

refractive Index D1218 73 96 100 100 100
pour point (°C) D97 54 66 80 78 73
viscosity @ -20 °C (cSt) D445 67 66 75 73 79
viscosity @ -40 °C (cSt) D445 59 84 100 100 100
naphthalenes, UV (vol%) D1840 55 85 94 99 99
distillation IBP (°C) D86 53 70 82 87 95
distillation 10% (°C) D86 56 75 98 99 100
distillation 20% (°C) D86 57 79 99 100 100
distillation 50% (°C) D86 61 77 97 99 99
distillation 90% (°C) D86 61 85 96 98 99
distillation FBP (°C) D86 64 87 94 95 98
hydrogen content (wt %) D3701 56 96 95 96 97
specific heat cap. @ 0 °C E1269 56 80 86 84 82
total sulfur (mg/kg) D2622 58 59 61 60 56
conductivity (pS) D2624 54 62 65 63 66
acid number (mg KOH/kg) D974 50 51 55 61 60

a Expressed as the percent probability that the PLS algorithm is
modeling that particular jet fuel property from NIR spectra.
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outliers that will not be appropriately predicted by the regression
model. Thus the calculated leverage of the incoming fuel
spectrum is first tested to verify that it is within the parameter
space of the applicable fuel model.

Prediction interval estimation for PLS regression is an active
area of research, with several proposed candidate methods. Of
these, the “error in variables” approach described by Faber and
Kowalski40 seems to have received the most attention, and it is
this approach that has been implemented in the NFPM. The
“zero order approximation”38 has been simplified41 and has been
demonstrated to provide reasonable estimates of prediction error
intervals with simulated and actual NIR data in the presence of
appreciable reference method error.42,43 In this simplified form,
the sample-specific standard deviation of the prediction error
is estimated as

σ(PE)unk ≈ √(hunk + 1 ⁄ n+ 1) × MSEC- σ(∆y)2 (6)

MSEC)
∑
i)1

n

(yi - ŷi)
2

n-A- 1
(7)

where h is the leverage associated with an unknown sample, n
is the number of calibration samples used to construct the PLS
model, MSEC is the mean-squared error of calibration for the
PLS model calibration samples, and σ(∆y)2 is the variance
associated with the ASTM reference values used. The resulting
sample-specific prediction interval is approximated as

ŷunk ( tR⁄2,n-A-1 × σ(PE)unk (8)

where ŷunk is the PLS-predicted fuel quality parameter value
for the unknown sample, tR/2,n - A - 1 is the critical value of a
t-distribution with degrees of freedom equal to the number of
calibration samples minus the number of PLS factors plus 1.
This approach rests on the assumptions that (1) MSEC is a
reliable estimate of the component sources of uncertainty within
a given PLS model; (2) the PLS model describes most of the
systematic variation in the NIR spectra; and (3) that the residuals
are within the limits of the model. Pessimistic estimates of the
reference method error will lead to optimistic estimates of
prediction error, or even to imaginary prediction error. Pierna
et al.43 suggest setting σ(∆y)2 to zero in situations where a good
estimate of reference value error is unavailable. This renders
the prediction error estimator exactly equivalent to that proposed
by Næs and Martens for Principal Component Regression
(PCR)44 and previously adopted by ASTM as standard practice
for infrared multivariate quantitative analysis.45

Calibration Transfer. The PLS modeling strategy is based
on accurately correlating subtle features in the analytical data

that are related to the property of interest. Thus, these critical
spectral features can be easily overwhelmed by differences in
the data from different instruments. A major challenge in
developing a practical implementation of chemometric fuel
property modeling for multiple instruments is the successful
extension of calibration models generated with data from one
instrument to data from another instrument. Traditional
methods46,47 for multivariate calibration typically involve the
computation of a transformation matrix that relates the field
instrument to the master. While often successful, this approach
requires the measurement of a large number of calibration
samples on each instrument, which is not always necessary and
not deemed appropriate for the intended application of this
device. Since in this case we are employing identical spectrom-
eters for each instrument, the spectral variations were minimal.
Therefore it was possible to develop a suitable data preprocess-
ing strategy that involves only one standard measurement on
each field spectrometer.

The preprocessing methodology that has been incorporated
into the software consists of the following five-step procedure:
(1) a two point baseline correction at 1000 nm and the lowest
point between 1500 and 1600 nm; (2) normalization by dividing
all values by the square root of the sum of the squares; (3)
addition of the heptane difference spectrum; (4) renormalizing,
and (5) mean centering. PLS modeling confirmed that this
simplified spectral preprocessing procedure was effective in
establishing calibration transfer between the reference (labora-
tory) and field instruments. All incoming fuel samples were
correctly classified, and the property prediction errors (RM-
SECV) from the field instrument were similar to what was
obtained with the calibrated reference instrument.

Synthetic Fuel Modeling. The U.S. Navy is preparing for
the deployment of synthetic jet and diesel fuels at levels of up
to 50% in petroleum-derived mobility fuels. Comingling and
other handling artifacts will require that these chemometric
property models be capable of functioning adequately with
petroleum fuels containing unknown amounts of different
synthetic fuels at up to 50%. Since the hydrocarbon distributions
of alternative fuels can be distinctly different than their
petroleum-derived counterparts, the presence of synthetics
presents a discontinuity between composition and properties.
As a consequence, PLS models derived from petroleum-derived
fuels will not respond properly in the presence of synthetic fuels.
To determine the extent to which the modeling techniques
developed for petroleum fuels can be applied to fuels containing
alternate fuels, the following synthetic fuels were blended in
an F-76 diesel and a Jet JP-5 fuel, at 30%, 50%, and 70% by
volume:

• Gas-to-Liquid (GTL) derived Fischer-Tropsch (FT) syn-
thetic jet fuel

• Coal-to-liquid (CTL) derived FT synthetic jet fuel
• Chemical derived FT synthetic diesel fuel
• CTL derived FT synthetic diesel fuel
A Principal Component Analysis (PCA)48,49 plot of the first

two principal components of near-infrared spectra (NIR) from
a specification F-76 naval distillate diesel fuel containing various
amounts of several synthetic fuels is shown in Figure 2. Similar
results were obtained from blends with a JP-5 fuel.

It is clear from Figure 2 that the presence of a small amount
of a synthetic fuel will exert a detectable response in the
resulting NIR derived PCA cluster plot when compared with

(40) Faber, K.; Kowalski, B. R. Propagation of Measurement Errors for
the Validation of Predictions Obtained by Principal Component Regression
and Partial Least Squares. J. Chemom. 1997, 11, 181–238.

(41) Faber, N. M.; Duewer, D. L.; Choquette, S. J.; Green, T. L.; Chesler,
S. N. Characterizing the Uncertainty in Near-Infrared Spectrscopic Prediction
of Mixed-Oxygenate Concentrations in Gasonline: Sample-Specific Predic-
tion Intervals. Anal. Chem. 1998, 70, 2972–2982.

(42) Faber, N. M.; Bro, R. Standard Error of Prediction for Multiway
PLS s 1. Background and a Simulation Study. Chemom. Intell. Lab. Syst.
2002, 61, 133–149.

(43) Pierna, J. A. F.; Jin, L.; Wahl, F.; Faber, N. M.; Massart, D. L.
Estimation of partial least squares regression prediction uncertainty when
the reference values carry a sizeable measurement error. Chemom. Intell.
Lab. Syst. 2003, 65, 281–291.

(44) Næs, T.; Martens, H. Principal component regression in NIR
analysis: Viewpoints, background details and selection of components.
J. Chemom. 1988, 2, 155–167.

(45) American Society for Testing and Materials, Annual Book of ASTM
Standards, Vol. 03.06, E1655, Standard Practices for Infrared, Multivariate,
Quantitative Analysis, ASTM International, West Conshohocken, PA, 1998.

(46) De Noord, O. E. Chemom. Intell. Lab. Syst. 1994, 25, 85–97.
(47) Wang, Y.; Veltkamp, D. J.; Kowalski, B. R. Anal. Chem. 1991,

62, 2750–2756.
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the neat fuel. The linear response in the PCA scores plot to the
compositional changes produced from blending the synthetic
fuels are clearly indicated by the solid lines. This indicates that
it should be possible to identify the synthetic fuel present in a
blend, since they are clearly delineated in the PCA scores plot.
The linear behavior of the blends in the PCA also indicated
that quantitative models could be developed to estimate the
synthetic fuel content in a blend with petroleum-derived fuels.
PLS models were thus calculated from these data to test this
hypothesis. As shown in Figure 3, the synthetic fuel content in
blends with diesel fuels were successfully predicted by PLS.
Similar results were obtained with jet fuel blends. The different
trends followed by each synthetic fuel in Figure 3 indicate that
while each different synthetic fuel will require its own model,
it would be possible to extend this modeling approach to blended
fuels, once the identity and quantity of the synthetic fuel is
known.

The effect that the presence of a particular synthetic fuel will
have on PLS-based fuel property predictions depends mainly
on what compositional aspects of the blended synthetic fuel are
contributing most to that particular fuel property. Accordingly,

some property models would be expected to be influenced to a
greater extent than others. This is indeed the case and is
illustrated in Figure 4, where the diesel fuel density model was
adequately predicting the impact of adding the FT diesel fuels
to petroleum F-76 and MGO diesel fuels. In contrast, the PLS
calibration model for viscosity was much more sensitive to the
presence of synthetics, as shown by the divergence of the
predicted values from the measured values in Figure 5. This is
reasonable since the FT synthetic fuels tend to be highly
isoparaffinic, and viscosity will be affected by both molecular
shape and mean hydrocarbon chain length.

If the composition of a fuel blend is linearly related to the
property of interest, and if the component of this composition
that is due to the synthetic fuel can be isolated, then it would
be possible to derive linear correction factors that would correct
the modeled property value. This is shown by the open squares
in Figure 5, where the identities and concentrations of the
synthetic fuel components were used to correct the modeled
viscosity values. These linear corrections are only applicable
over a limited range, since as the synthetic fuel content increases
the adjustment tends to becomes less precise. When the leverage
of each unknown sample property model is examined, it appears
that as the amount of FT fuel in petroleum fuel is increased, at
some point, it is no longer possible to estimate those property

(48) Jackson, J. E. J. Qual. Tech. 1981, 13(1), 125–130.
(49) Jackson, J. E. A User’s Guide to Principal Components; John Wiley

& Sons: New York, 1991.

Figure 2. PCA scores plot showing how different synthetic fuels
blended into F-76 naval distillate fuel can be discriminated.

Figure 3. Estimation of synthetic fuel content in F-76 naval distillate
fuel by PLS modeling of NIR spectra.

Figure 4. Predicted density of petroleum diesel fuels (solid points) and
blends with synthetic fuels (circled points), using the PLS model
computed from neat petroleum fuels.

Figure 5. Predicted jet fuel viscosities of neat JP-5 fuels (solid points),
blends with synthetics (solid squares), and corrected values from blends
by linear interpolation (unfilled squares).
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values with a simple linear correction factor. A more analytical
examination of this approach to define these limitations is the
subject of current research. This computational strategy was thus
employed to extend the applicability of the PLS property models
to blends of petroleum-derived and synthetic fuels, and suc-
cessfully implemented in the prototype fuel analyzer described
below.

Implementation. The Navy Fuel Property Monitor (NFPM)
is a NIR-based prototype designed to test shipboard and field
implementations of the fuel modeling methods described above.
The NFPM prototype consists of a data system, NIR spectrom-
eter, and a fiber optic transflectance dipping probe. A touch
screen computer (Model TPC-1070, Avantech Co., Ltd.) with
a 10.4 in. screen was used for the data system. The computer
employs a 1 GHz Intel Celeron processor, running Microsoft
Windows XP. The data acquisition and analysis application
software was developed using LabVIEW (version 8.5, National
Instruments Corp, Austin, TX), and compiled as a standalone
executable program. Instrument interface code was coded in
C2+ and linked into the LabVIEW code. The extensible nature
of the LabVIEW programming environment facilitated proto-
typing and made it a natural choice for the continued prototyping
of the control and data analysis component of the sensor-based
fuel diagnostic device. A mechanism for PLS and PCA model
maintenance was implemented in a manner that allows the user
to easily update the models as more fuels are added to the
database.

The properties that the NFPM reports are shown in Table 3
for jet and diesel fuels along with the ASTM methods used to
generate the reference property values. In addition to the
predicted property values, a measure of the compositional
similarity of a given fuel with specification fuels in the current
fuels database is reported, and fuels that are not within
compliance with the applicable specifications are flagged
accordingly.

Since the chemical constituents that contribute to many
properties can be distinctly different in different types of fuels,
separate PLS models were constructed and optimized for jet
and diesel fuels. The jet fuel model was developed with JP-5,
JP-8, and Jet-A fuels, and the diesel fuel model is based on
NATO F-76 naval distillate, ultra low sulfur diesel (ULSD),
and marine gas oil (MGO) fuels. Other specialized models can
be added as the capabilities of the device are expanded. The
computationally intensive chemometric analyses are performed

in the laboratory, as described above. The models are then
exported to the NFPM in a single compiled binary file, thus
facilitating model maintenance of field instruments. This ap-
proach reduces the computational requirements of the field
device, allowing for rapid, real-time analysis, while reducing
the cost of the data acquisition and analysis system.

In Figure 6, the computational procedural flowchart is shown.
After the NIR spectrum of the unknown sample is collected,
the incoming data are preprocessed (baseline corrected and mean
centered), and a principal component analysis (PCA) is per-
formed to determine the type of fuel and overall compositional
similarity to the reference specification fuels in the database.
This is done by computing the leverages in accordance with eq
4 of the incoming sample with the fuel type models, which are
currently jet and diesel fuel. A tabbed screen displays the fuel
classification and a live PCA scores plot. This plot depicts the
overall similarity of the unknown fuel sample to the specification
fuel training set by the position of that sample in the PCA scores
space as indicated on the plot.

The appropriate PLS model (jet or diesel) is then selected
for property predictions, and a series of PLSD models are then
used to further characterize the incoming fuel. First, the
incoming sample is classified as either a jet or a diesel fuel, or
if it is a Fischer-Tropsch (FT) synthetic blend. If FT fuel is
found to be present, the identity and concentration of the FT
fuel is determined. If a diesel sample is not classified as a FT
synthetic, it is checked to determine if it contains biodiesel

Table 3. Fuel Properties Estimated with the NFPM for Jet
Fuels (JP-5, JP-8, Jet-A) and Diesel Fuels (F-76, ULSD, MGO)a

property ASTM methods
jet

fuels
diesel
fuels

flash point (°C) D93 × ×
density @ 15 °C (kg/l) D4052 × ×
viscosity @ -20 °C (cSt) D445 ×
viscosity @ -40 °C (cSt) D445 ×
fuel system icing inhibitor (vol%) D5006 ×
pour point (°C) D97 × ×
freeze point (°C) D5972, D2386 ×
cetane Index D976 ×
aromatics, FIA (vol%) D1319 ×
naphthalenes, UV (vol%) D1840 ×
saturates, FIA (vol%) D1319 ×
distillation IBP (°C) D86 × ×
distillation 10% (°C) D86 × ×
distillation 20% (°C) D86 × ×
distillation 50% (°C) D86 × ×
distillation 90% (°C) D86 × ×
distillation FBP (°C) D86 × ×

a The ASTM specifications refer to the method used to generate the
respective PLS property models.

Figure 6. NFPM fuel property prediction software procedural flowchart.
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content, and if so, an estimate of biodiesel content is also
calculated. Finally, the software determines if the diesel fuel is
an Ultra Low Sulfur Diesel (ULSD) or neat (unblended and
untreated) fuel. These serial discriminant tests can be expanded
as necessary when other grades and types of fuels become
available. It should be noted that this approach requires dedicated
discriminant models for each unique synthetic or biofuel, so it
will only perform these calculations with non-petroleum fuels
that have already been measured.

After the fuel is properly classified, each fuel property is
calculated with the appropriate PLS model and tested for model
compliance using the Q residuals48 for variance outside the
model and the T2 statistic for variance within the model. Any
reported property predictions that are determined to be outside
the 95% confidence interval with respect to either of these
statistics for the appropriate PLS calibration model are flagged
as having low confidence and are not reported. Thus, the system
will not report any results in the event of excessive spectral or
modeling errors. This conservative approach was taken to avoid
the possibility of falsely passing any fuel on the basis of
calculated results that are uncertain or not represented by the
PLS property model. This will also cause fuels and blends that
may have undergone chemical changes during storage to be
flagged as off-specification, since these degraded fuels would
no longer be within the PLS model. The calculated property
values are shown along with the estimated prediction error
interval, as described above, the fuel type (jet, diesel or ULSD),
and an estimate of the percentage of FT or biodiesel fuel present.
Calculated property values that are within the specification
ranges are displayed as black text on a white background. Off-
specification values are displayed in red text. Values calculated
with low confidence are not reported and are displayed as grayed
out asterisks. The user can save the results by entering a filename
with an on-screen keyboard. All predicted values are automati-
cally saved to an ASCII text log file, as well as both the raw
and aligned spectrum of the incoming sample.

The data system was designed to calculate the PCA plot and
property values in both real-time and from previously acquired
spectra. This provides the capability to obtain real-time fuel
identification and property monitoring in pipeline flow, as well
as with batch samples.

PLS Model Performance. The applicability of the ASTM
calibration data used to develop the PLS prediction models can
be expressed by the ratio of the range of available property
values and the ASTM measurement error, that is, the range-
error ratio (RER). Thus, for a given property, a data set with a
low RER would imply that the ASTM test method would be a
significant source of uncertainty in the PLS predicted value of
that property. The total uncertainty of a PLS property prediction
is a function of the ASTM calibration data uncertainty, as well
as uncertainty in the spectroscopic data (i.e., instrumental error)
and in the PLS regression itself (i.e., modeling error). Prediction
error estimation in PLS regression is an active area of research,
with several proposed candidate methods. Of these, the “error
in variables” approach described by Faber and Kowalski seems
to have received the most attention. A simplified, “zero order
approximation” based on this approach has been demonstrated
to provide reasonable estimates of prediction error intervals with
simulated and experimental NIR data. It is not clear, however,
at what RER value a data set begins to significantly violate the
underlying assumptions on which the estimate is based, and this
is the subject of ongoing work to provide more robust measures
of prediction interval estimation when predicting fuel quality
parameters.

What is clear, however, is that for appropriate fuel property
prediction and for prediction error estimation, the property must
have a relationship with the NIR spectra that is capable of being
modeled by PLS and that an optimal PLS model must be built
that neither overfits nor underfits the calibration data. The former
leads to overly optimistic estimates of model error and poor
robustness while the latter leads to poor accuracy and highly
biased predictions. The ability to calculate each reported
property from the NIR spectra by PLS modeling was verified
by statistical analysis of the relative RMSECV modeling errors
of the calibration training set before and after randomizing the
property data. When modeling non-ideal calibration data (i.e.,
fuels), traditional methods for choosing model size tend to
produce overfitting, which leads to either false results or models
that are so specific to the calibration training set that they cannot
recognize new incoming fuel samples. Significance testing of
the NIR based fuel property models demonstrated that the fuel
properties could indeed be modeled from NIR spectra without
overfitting.

While the modeling errors (Root Mean Squared Error of
Cross-Validation, or RMSECV) provide a measure of how well
the calibration data are correlated to the property values, the
most straightforward evaluation can be obtained by computing
the linear correlation coefficients of predicted versus measured
properties. The linear correlation coefficients of the predicted
properties for the currently reported jet and diesel fuel properties
are summarized in Tables 4 and 5, respectively. The perfor-
mance of the current PLS models to predict each property from
the NIR data are classified as good (R2 ) 1.00-0.80), marginal

Table 4. PLS Model Performance for Prediction of Neat Jet
Fuel Properties, As Measured by the Root Mean Squared Error
of the Cross Validation (RMSECV) and the Linear Correlation
Coefficient (r2) of Predicted vs Measured Values, Compared to

the Published Astm Method Repeatability

property
ASTM
method

no.
samples

no.
LV r2

ASTM
repeat. RMSECV

flash point (°C) D93 364 7 0.72 3.5 4.1
density at 15 °C (kg/l) D4052 154 8 0.97 0.0001 0.0019
viscosity @ -20 °C (cSt) D445 50 3 0.73 0.5202
fuel system icing inhibitor

(vol%)
D5006 275 8 0.89 0.009 0.009

freeze point (°C) D5972 356 3 0.09 0.7 6.37
aromatics, FIA (vol%) D1319 50 6 0.93 1.3 1.1
naphthalenes (vol%) D1840 40 3 0.72 0.051 0.486
saturates, FIA (vol%) D1319 42 7 0.96 1.40 0.84
distillation IBP (°C) D86 268 7 0.75 6.3 6.8
distillation 10% (°C) D86 268 8 0.90 5.1 3.9
distillation 20% (°C) D86 267 8 0.93 5.3 3.3
distillation 50% (°C) D86 268 7 0.90 9.0 3.2
distillation 90% (°C) D86 268 6 0.57 5.4 5.3
distillation FBP (°C) D86 268 6 0.57 6.3 6.6

Table 5. PLS Model Performance for Prediction of Neat Diesel
Fuel Properties, As Measured by the Root Mean Squared Error
of the Cross Validation (RMSECV) and the Linear Correlation
Coefficient (r2) of Predicted vs Measured Values, Compared to

the Published ASTM Method Repeatability

property
ASTM
method

no.
samples

no.
LV r2

ASTM
repeat. RMSECV

flash point (°C) D93 280 4 0.22 3.5 8.9
density at 15 °C (kg/l) D4052 280 8 0.96 0.0001 0.0024
viscosity @ 40 °C (cSt) D445 261 8 0.85 0.195
cetane Index D976 261 7 0.82 1.5
pour point (°C) D5949 155 2 0.30 3.4 5.0
distillation IBP (°C) D86 191 1 0.17 6.3 12.6
distillation 10% (°C) D86 196 5 0.62 5.1 8.9
distillation 20% (°C) D86 166 6 0.72 5.3 8.2
distillation 50% (°C) D86 199 7 0.80 9.0 6.1
distillation 90% (°C) D86 258 5 0.46 5.4 8.1
distillation FBP (°C) D86 258 5 0.37 6.3 9.5
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(R2 ) 0.79-0.60), or poor (R2 < 0.59). Those properties that
fall into the “good” category are considered to be adequately
predicted and those classified as “marginal” will require
additional training set samples. It is important to realize that
this classification represents the PLS modeling based on our
current training set, and it is reasonable to expect that many of
the property predictions will improve as our training set is more
fully developed and refined. The precision of these NIR-based
property models will be limited by the precision of the
underlying ASTM measurements, as well as the inherent
correlations between the spectra and a particular fuel property.

Conclusions

Since the U.S. Navy is preparing for the deployment of
synthetic jet and diesel fuels at levels of up to 50% in traditional
petroleum fuels, a flexible approach using a staged modeling
strategy was developed to correctly classify these novel fuels
and blends. Since fuels are comingled in the supply system and
several different synthetic fuels can be deployed, modeling
methodologies have been developed to identify and quantify
the synthetic fuel present. Properties of blends containing
synthetic fuels can be estimated through a combination of linear
interpolation and the application of specific models for the
different synthetic fuels.

The modeling techniques discussed in this paper were
successfully implemented in the Navy Fuel Property Monitor,
which can successfully discriminate between jet, diesel, ULSD,
Fischer-Tropsch synthetic jet/diesel, and biofuels. Currently

the device also provides estimates of FT and biofuel content in
blends with petroleum-derived Navy mobility fuels. The graphi-
cal user interface of the NFPM depicts the overall compositional
similarity of the incoming sample to specification jet and diesel
fuels and estimates of a broad range of properties that are critical
for required quality surveillance procedures. Calculating the PLS
model applicability for each predicted property avoids the
possibility of falsely passing any fuel that has undergone
chemical changes or is otherwise not represented by the
appropriate PLS property model. With different instances of
an analyzer that employs identical spectrometric instrumentation,
a simplified data preprocessing strategy that involves only one
standard measurement proved adequate for calibration transfer.

Future efforts will be directed toward refinement of the
chemometric models and the assessment of advantages that may
be gained from incorporating data from other complementary
sensing technologies. In addition, the NFPM will provide the
basis for a real-time fuel quality monitoring capability through
spectroscopic sensors mounted directly in fuel pipelines.
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